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Abstract

The goal of this paper is to provide a foundation for objectively compar-

ing volume rendered images. The key elements of the foundation are: (1) a

rigorous specification of all the parameters that need to be specified to de-
fine the conditions under which a volume rendered image is generated; (2)

a methodology for difference classification, including a suite of functions or

metrics to quantify and classify the difference between two volume rendered

images that will support an analysis of the relative importance of particular
differences. The results of this method can be used to study the changes

caused by modifying particular parameter values, to compare and quantify

changes between images of similar data sets rendered in the same way, and
even to detect errors in the design, implementation or modification of a

volume rendering system. If one has a benchmark image, for example one

created by a high accuracy volume rendering system, the method can be

used to evaluate the accuracy of a given image.

1 INTRODUCTION

As the availability and use of scientific visualization software has increased, the need to

improve methods of evaluating this software has become apparent. In the beginning, having
a visualization of data was so much better than not having one that much could be forgiven.



The visualizationprogrammerswerethe domainscientistsor workeddirectly with them. If
therewereerrors in the visualization,they would be obviousto the scientistand so could
easilybe fixed. But now asthe developersof visualizationsoftwarebecomemoreremoved
from the users,the importanceof verifiable accuracygrows. Visualizationscanbe very
misleadingand the errorsareeasyto miss. It is essentialto be ableto distinguishbetween
the resultsof the visualizationthat reflect the dataand the resultsdueto the visuMization
processitself [19]. This concernis evident in the visualizationcommunityfrom the recent
proliferationof panelsand paperson the subject [9, 19,20, 23,38,51,63, 76].

For scientific visualization, the best. evaluation of an image's accuracy and quality is its

ability to support a viewer's accomplishment of particular tasks -- so the ideal method

for evaluating visualization software is by user testing. But user testing is difficult, time

consuming and expensive; and the results don't generalize easily. Therefore, we would like

to have computable functions for evaluating visualizations which at least, roughly predict

human performance of tasks dependent on the visualization.

In this paper, we focus on the evaluation of volume rendered images because this area is

sufficiently narrow to be tractable and sufficiently broad to be useful. The methods used for

direct volume rendering and the results generated are sufficiently similar across applications

to raise hopes that the same design process, if not exactly the same functions, will be broadly

applicable.

Methods for volume rendering rectilinear or voxel data sets, such as scanned medical data,

have been intensively investigated [8, 10, 25, 27, 29, 30, 33, 34, 40, 52, 5.5, 59, 62, 67, 77].

As a result of this research, and by exploiting the geometric regularity of the data samples,

volume rendering systems now exist that can interactivety generate useful images of such

data, even when the data sets are very large.

On the other hand, volume rendering systems for nonrectilinear (curvilinear, unstrlict.ured,

or scattered) data sets are relat{veiy slow due to the complex geometric confignrai_ion of the

underlying mesh [5, 11, 12, 13, 15, 28, 35, 37, 40, .5.5, 57, 64, 65, 68, 69, 74, 78]. For large

unstructured data Sets, it is currently necessary either to wait a substantial time for an image

to be generated or to introduce various approximations into the volume rendering process to

reduce the time. Some approximation methods are justifiable and can result in useful images

for visualization, a However, it is important, to know exactly how much these approximations

are distorting the volume rendered image. Therefore, this class of applications is in especial

need of methods for evaluating image quality and accuracy.

The goal of this paper is to provide a foundation for objectively comparing volume rendered

images. The two key elements of the foundation are: (1) a exhaustive list of all the parameters

(hat need to be specified to define the conditions under which a volume rendered image is

_The question "Why not resample an unstructured data set to a rectilinear mesh?" is frequently enconn-
tered. Unfortunately, there are theoretical and practical difficulties associated with this. These issues are
addressed in Appendix A.



generated;(2) a methodologyfor differenceclassification,including a suiteof flmctionsor
metricsto quantify and classifythe differencebetweentwo volumerenderedimagesthat will
support ananalysisof the relative importanceof particulardifferences.

A completespecificationof the parametersis necessaryto properly compare the results from

different software rendering "the same" image, and to be able to isolate the effects on an

image of particular parameter choices. In addition, such a list of all the possible parameters

available for selection may bring to mind new applications and possibilities t.ha( had not

occurred to the visualization scientist. Some of these possibilities are discussed in Section 3.

In designing metrics, we are specifically interested in measuring the differences between two

images that affect the interpretation of the data. Some differences, such as a small amount

of random noise or the overall brightness of the image, may have no significant effect on

what the user notices. Other differences, such as an edge or a bright spot., could seriously

mislead a scientist who is looking for patterns or structure in a data set.. Our approach is to

develop: (a) a methodology for difference classification, (b) metrics which can be objectively

calculated and that. yield a numerical measure of the various classes of difference, and (c)

techniques for analyzing the content of each of these categories of difference and, if possible,

finding the source of the differences. The differences are separated into three classes, each

of which has a distinct, perceptual impact. The importance of a particular class of difference

will depend on the visualization task being performed.

The difference metrics have several potential applications. The results of this method can be

used to study the changes caused by modifying particular parameter values, or to compare

and quantify changes between images of similar data sets rendered in t.he same way, for

example air flow past the same aircraft but at different velocities, or changes in images of

different time slices from the same time-varying data set. They can even be used to to detect

errors in the design, implementation or modification of a volume rendering system. If one

has a benchmark image, for example one created by a trusted system of high precision, the

metrics can be used to evaluate the accuracy of a given image and t.o measure the effect on

images when approximations are introduced into the volume rendering process.

This paper provides a complete specification of the input parameters for a volume rendering

system. In addition, we present a methodology for analyzing the difference between two vol-

ume rendered images. A companion paper will report on the application of the methodology

developed herein to evaluate images produced by several existing volume rendering systems
for a suite of nonrectilinear data sets. Several benchmark scenes will be included. The design

and implementation of a high accuracy volume rendering system for generating benchmark

quality images of unstructured data sets is described by Williams, Max and Stein in [73].

The following section refines the problem statement and places the problem in context.

Section 3 proposes a standard generation specification for volume rendered images. Section 4

describes a set of metrics to classify and quantify the differences between two volume rendered

images.



2 PROBLEM STATEMENT

The best test of the quality of a visualization is whether it enables the user to accomplish

the intended task more accurately, more rapidly and more easily than alternatives. Such

an evaluation requires careful specification of the task and precise measures of accuracy

in accomplishing it. It also requires extensive testing with an appropriate user population

and a carefillly defined testing procedure. The results of such testing are dependable but

expensive and narrowly applicable. If the task to be accomplished or the population using

the tool are varied or if some characteristics of the visualizations or input data differ, then

the previous results do not necessarily apply. Volume rendering has an extremely wide range

of applications, the tasks in each application vary dramatically, and many techniques are

available for generating the images. Once many narrow studies have been done, it may be

possible to formulate and test more general models, but these models will not be available

for USe soon.

We would like a set of analytical tests which provide an objective basis for comparing the

quality of visualizations. Ideally, the results of these tests will be good predictors of human

performance on a range of tasks when using these visualizations. These tests must measure

differences in images in a way that corresponds to differences in users' perceptions and

interpretations of the images.

Three examples illustrate the diversity of applications and tasks that can be addressed with

volume rendering. In medicine, volume rendering is used to display CT and MR data.

The tasks to be performed range from material classification of regions of the volume to

estimating size and relative position of particular features. The users are highly trained and

there is a clear standard of what to expect, for example a kidney has a typical size, shape

and location. Variations from the norm are of primary interest.

In seismic exploration, the data collected resembles ultrasound medical data, and some of

the tasks, particularly classification, are also similar. However, the context is quite different.

The training of a seismic interpreter is very different from that of a physician, and there is

a much wider range in the possible structures to discover. The kind of structures of interest

also vary with the intent of the scientist, for example earthquake prediction as opposed to

seeking oil.

In computational aerodynamics, a fluid is being modeled. Therefore material classification is

not a significant part of the visualization as it is in the ca_e of seismic or medical applications.

Vector rather than scalar quantities are the primary focus. Scalar values are derived which

highlight information about the vector field. A vortex in a flow field is a very different kind

of feature from a kidney stone inside a human patient.

To develop tools that are useful across such a broad range of applications, the ta_sks to be

accomplished must be considered very abstractly, and human perceptual abilities must be a

major guide. Several sources [4, 14, 16, 49, 60, 61] have developed guidelines for producing



good visualizations. Theserules are basedon humanperceptualabilities and propensities
but are generallyfocusedon presentationof information to an audience,rather than on
constructingvisualizationsfor a scientistto explorenew data.

A number of image quMity metrics have beenproposedand discussedin the literature.
Barrett [2, 3] discussesthe derivationof a "mathematicalobserver"in the contextof radio-
logical images,wherethe task is restrictedto assigningthe imageto oneof a fixed number
of classes(eg "lesionpresent"or "lesionabsent"). Imagequality is thendeterminedby the
performanceof the mathematicalobserver.We seeka methodfor comparingimagesthat
is lesstask specific. Neumann[43] describes an aggregate comparison metric in which an

image is represented as a single vector of pixel attributes and the metric is calculated a_ the

inner product of two normalized image-vectors. Neumann also discusses a non image-based

feature scale method for measuring image quality. Wilhelms and Van Gelder [70] use the

combination of RMS and maximum absolule difference as a metric. A good deal of atten-

tion has been given to investigating and developing metrics which include a consideration

of human perceptual performance/experience. Several overall image quality measures based

on the human visual system are discussed in [18, 22, 24, 36, 45, 47, 53, 56, 58]. However,

these measures are complex and not entirely complete, and no nniversal agreement has been

achieved despite years of research. We prefer to objectively classify the difference between

two images into categories, each of which has a unique perceptual impact on the user, and

then to apply a metric to each category individually.

3 STANDARD GENERATION SPECIFICATIONS

We want to measure the differences in volume rendered images in a way' that will allow us

to determine whether two systems given the same input really make the same picture. We

also want to be able to measure the impact of changing rendering parameters or the effect.

of changes in the data (the scene content).

To make a usefid comparison of images generated by different volume rendering systems

requires great care in assuring that all the parameters (the scene, the viewing specifications,

the data set, etc) are appropriately matched. Similarly, a study of the effects of changing

a single parameter requires the careful control of all the other parameters. So a complete

listing of all the parameters that require specification is an important prerequisite for using

the metrics. The set of specific instances of all these parameters that is used to generate an

actual image is called the generation spemfication for that image.

Certain image generation information may be specified in different but equivalent ways,

e.g. a viewing position may be stated as a series of rotations and translations, or by an

eye position, a look-at position and an up-vector. We will choose one and assume that.

conversions can be computed.



Most volume rendering systems will not have explicit inputs for controlling all the possible pa-

rameters. Many parameter choices are made as design decisions during system development;

other choices may not have even occurred to the developers. These hardwired parameters

must also be determined in order to do a thorough job of understanding a comparison.

Sub-Section A gives a complete and detailed list of all the parameters that must be specified

to precisely define the conditions under which a volume rendered image is generated. In

Sub-See(ion B, the parameters are described in further detail.

A. Parameter Listing

The following summarizes the general:categories of information needed to specify (,he condi-

tions under which a volume rendered image is generated.

General Specification Categories

Scene Description

Data Set

Transfer Functions

Background

I,ighting

Derived and Embedded Objects

Viewing Parameters

Optical Model

Image Specification

The information within each of the above categories is enumerated below.

Scene Description:
Data Set:

• geometry

• data field name(s), data values, and precision

• time step

• data location (at vertices, or face- or cell-centered)

. mathematical operations on ttle field values resulting in derived values

• intra-cell interpolation information

• modeling transformations for multiple grids

• symmetry transformations
Transfer Functions:

• mapping from scalar data value to color emission

• mapping from scalar data value to extinction coefficient
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Background:

. background color and/or texture map

Lighting:

• intensity, location and direction of lights

• intensity of ambient light

• illumination model

Derived and Embedded Objects:

, surface or procedural description

. material properties and shading model for snrfaces

Viewing Parameters:

• projection type (orthographic/perspective)

• eye position, look-at position, up vector

• viewplane window (right, left, top, bottom,)

• distance from eye to viewplane

. z-near, z-far clipping planes

. viewing coordinate system handedness

Optical Model:

• underlying theoretical optical model or light intensity differential equation

, precise definition of optical properties of volume density

Image Specification:

• image size in pixels

• image format

B. Explanations, Preferences and Assumptions

In this section, the descriptions of certain parameters listed in the previous section are

amplified and/or qualified. Any related assumptions as well as our preferences are stated.

The Scene Description:

The Data Set:

The data set geometry must be specified -- this includes the following information: the

coordinate system (Cartesian, cylindrical, spherical, etc.) in which the data is defined, in

the case of a Cartesian system, whether it is right or left handed, the number of vertices in

the data set, and the coordinates of each vertex. If the data set is defined on an underlying

grid or mesh, the following information should also be given: the number of cells of each type

(tetrahedron, pyramid, prism, brick, etc.), the vertices which define each cell and each face

of each cell. Currently, there is no standard format for these specifications. For unstructured
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datasets,weusethe format givenby Williams, Max andStein in [73].For structuredCFD
data sets, suchas curvillnear mesheswith hexahedralcells,the PLOT3D file formats, as
updatedin [66],seemuseful.

Sincea dataset usually consists of several fields, each specified for one or more time steps,

the name(s) of the specific data field(s) being visualized and their associated time step must

be specified. (As described in the following section on transfer functions, more than one

field may be used directly in creating the visualization.) If the field being visualized is itself

derived from one or more of the raw data fields, the flmction to calculate this derived field

must be specified. In addition, the precision of the data fields in the data set should be
stated.

To allow the field to be correctly evaluated within a cell, interpolation fimctions need to

be specified for each cell type. If applicable, the order 0f the cells should be stated; for

example, finite element data sets may have |_near, quadratic or cubic cells and the cell

faces may" be planar or curvilinear. To ensure maximum accuracy in the visualization, the

scientist generating the data set should provide as much information as possible about the

interpolation methods used in the simulation, including if applicable, the actual shape or

parameter fimctions used to generate the data. For scattered data, Nielson [44] and Ruprecht

and Muller [50] discuss appropriate interpolation methods. Either the use of locally bounded

multiquadric radial basis fimctions, or the triangulation of the points Mth a Delaunay or a

regular triangulation [32] and then use of linear interpolation seems preferable.

If a data set has multiple grids, each with its own coordinate system, the modeling trans-

formation must be provided for each grid so as to specify the relative positions of the grids.

Any symmetry transformations used to visualize symmetric areas of the field that are not

actually part of the data set should be specified.

Transfer functions:

Transfer fimctions specify the mappings from scalar field values to color and extinction

coefficient values. These mappings need to be clearly specified. One method for doing this

is described below. In addition, for non-gray-scale maps, the color model (RGB, HSV, etc.)

should be specified. Sometimes it is useful to map one data field to color and a different field

to opacity (and even to show iso-surfaces of a third field value); these mappings need to be

stated.

Transfer fimctions are commonly specified in a piecewise linear fashion; there are a number

of benefits from doing this. When the scalar field varies linearly within a cell, the differential

equation for the light intensity along a ray through the volume can be integrated exactly if

the transfer functions are linear or plecewise linear [75] (assuming the use of the RGB color

model). In addition, the use of linear or piecewise linear transfer fimctions allows certain

efficiencies in the volume rendering process.

In selecting the transfer functions, it should be recognized that a C 1 discontinuity occurs



at the junction of two adjacentlinearportions of a piecewiselinear transfer function. This
discontinuitycan introduce artifacts into the volume rendered image. For example, inside a

linear tetrahedra, the field varies linearly therefore the intensity in the image should too; but

if within the cell the field values straddle a discontinuity in the transfer flmction, a nonlinear

variation in the intensity will be introduced. To eliminate this effect, would require the

transfer functions to be linear over their entire range (constant. or a ramp). This is a rather

impractical limitation and usually it. suffices just to minimize the number of breakpoints. For

maximum accuracy, the transfer flmctions should be applied after the data is interpolated

within a cell, rather than interpolating the color and extinction coefficient.

An unambiguous specification of the transfer flmctions is a key element, in tile generation

of volume rendered images. One useful method for specifying the functions is a table with

entries for the data field value, the color and the extinction coefficient, si,ci,ei , I < i < n,

where si <_ si+l. For s < sl the color and extinction coefficient are cl, el; similarly for s > s,_

they are c,,en. For si < s < Si+l, color and extinction coefficient are linearly interpolated

between ci and ci+l, and ei and ei+l, respectively. A discontinuity in the transfer flmction

can be specified by giving two different, sets of color and extinction coemcient for the same

scalar value, so for successive indices i and j, si = sj, si, ci, ei and sj, cj, ej would be specified.

The idea being that one piece of the transfer function runs from si-i to si and another piece

from sj to s j+l, thus allowing a discontinuity at si = sj.

The Background:
The background may be a solid color specified as a pixel value, or a pattern specified as an

image or as a procedural mapping from either the data set coordinate system or the viewing

coordinate system to a pixel value. For the purpose of image comparison, a solid background,

preferably black, eliminates the problem of a slight, misalignment in background patterns.

However, for general use, background patterns, such as a black and white checkerboard, are

an excellent aid in understanding semitransparent images.

Lighting:

If the optical model requires lighting, for example to produce shaded contour surfaces with-

out actually constructing surface polygons as in Max's single scattering model [41], or if

lighting is required to shade the surfaces of embedded or derived objects, it is necessary

to specify the direction, position and intensity of the external light(s), the intensity of the

ambient light, and the illumination model, for example Lambert, Phong, Blinn-Phong, etc.,

Derived and Embedded Objects:

It can be very usefld to embed surfaces or solid objects in a visualization to serve as a physical

reference and give visual cues, for example an airfoil in a flow field or the biopsy needle in

an image from ultrasound data. Often this information is given as a set of polygons in the

data set. Derived objects, such Ks isosurfaces, cutting planes, stream surfaces, etc. should
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be flllly specified,including thenameof the scalarfield from whichthey arederivedandthe
criteria usedto calculatethem, suchmsthe contourvalue,rakeposition,etc.

Thecolorof theseobjectsshouldalsobespecified.If the surfacesof theseobjectsareshaded,
the shadingmethod, for exampleGouraudor Phong,and the relevantmaterialproperties
(ambient,diffuseand specularreflectivity,shininess,transparency,etc.) appropriatefor the
illumination modelneedto be specified.In addition, the outward directionof the surfaces
shouldbespecified,e.g. for a contour surface, whether the normal points in the direction of

the gradient or in the opposite direction.

Viewing Parameters:

The viewing parameters described in Section 3 are complete. However any alternative spec-

ification may be used if it can be unambiguously converted to that shown here. We assume

(he view plane is perpendicular to the line between the eye position and the look-at position

as is usual in volume rendering. If this is not the case, this should be stated. We also assume

that all parameters are given in world coordinates.

Optical Model:

A number of different optical models suitable for volume rendering are described by Max in

[41]. The optical model specification must include both (at a precise definition of the opti-

cal properties: color emission (or glow energy if monochromatic) and/or absorption (optical

density or extinction coefficient) 2, and (b) the differential equation for the light intensity

along a ray through the volume in terms of these optical properties. Examples of such dif-

ferential equations are given by equations (1), (4), and (6)in [41]. The differential equation

for the model should be specified in its basic form before any simplifications or assumptions

(such as assuming the color or scalar field is constant within a cell, or that the interpolation

function is linear). This should be done even if simplifications or assumptions are used to

actually generate the image. This allows a benchmark system to create an accurate image for

comparison based on the unsimplified differential equation. Failure to specify any aspect of

the optical model can result in ambiguity. An actual example of ambiguity in a visualization

caused by an incomplete specification of the underlying optical model is given in Appendix B.

Image Specification:

Formally, an image is a two dimensional function f(x, y), where x and y denote spatial screen

coordinates and the value of f at any point (x, y) is the pixel value of the image at that

point. For our purposes, a pixd vahte p is an n-dimensional vector p C Nn specifying light

intensity. For a gray-scale image, n is 1. For a tristimulus system such as RGI? or HSV, n

is 3. Unless otherwise specified, an image refers to a volume rendered image.

For benchmark comparisons, pixel values should have the maximum available precision. This

_Optical density p is the term used in [7,5],it is equivalent to the extinction coefficient r used in [41].
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of coursewill depend)lot only on the compiler,but on the renderingmethod (hardwareor
software)andthe algorithmused. If the pixel valuesaregeneratedasfloatingpoint numbers
and then convertedto limited precision(e.g. 8-bit per channel)for display,it is preferable
to usethe floating point valuesfor comparisonpurposes. The pixel valuesshouldbe the
raw values,before anyadjustmentssuchasfor ratio-basedintensity or gammacorrection.
Compressionshouldnot beusedunlessit is lossless.Forthe workherein,the pixel valuesare
singleprecisionfloating point numbersin the range[0.0,1.0](exceptfor differenceimages
which areintroducedand describedin the next section).

The imagesize is specifiedin pixels, as zres pixels horizontally by yres pixels vertically.

The pixel array storage convention should be clearly specified. The location of the point at

which the pixel value is calculated within the overall area of the pixel should be specified,

for example at the center of the pixel area or at the lower left hand corner, etc.

4 DIFFERENCE METRICS

A metric is a measure of the distance between two objects. In mathematical analysis, me)rics

are required to be nonnegative, independent of the order in which the objects are specified,

and abide by the triangle inequality. In addition, if the distance between objects is zero,

they must be the same object. The metrics we define are intended to be a measure of

the difference between two images. A difference of zero should surely mean the images are

the same. Making the measurements nonnegative and symmetric is easily done. Only the

verification of the triangle inequality may be difficult. Because we classify the difference

and compute measures of each class separately, calling these measurements metrics may be

abusing the term slightly, but it reminds us of the ideal we would like to have.

We may use the metric to compare an image generated by a newly constructed volume

renderer with a benchmark image, or to measure the effect on an image when a rendering

parameter is varied. We first focus on metrics for comparing a single color component of two

images. These may be two gray-scale images or a single channel of two multichannel images.

Other methods for multichannel image comparison are discussed below. For the remainder

of this paper, we assume all images have a solid black background.

Let the difference image of two images A and B be the image formed by subtracting image B

from image A on a pixel by pixel basis; this is written as diff(A, B). For the purposes of this

paper, pixel values of a difference image are in the range [-1.0, 1.0]. A difference image can

be displayed in a number of ways, for example: (a) display the absolute value of each pixel

value, (b) clamp the pixel values at +0.5 and then add 0.5 to each pixel value, (c) divide

the pixel values by 0.5 and then add 0.5 to each pixel value, or (d) convert the difference

image to a color image where the positive pixel values and the negative pixet values are each

mapped to different colors.

11



Any of the following operations applied to the absolute value of all pixels in the difference

image is a valid metric on A and B: the sum, the maximum value, the arithmetic mean, the

mid-mean (the arithmetic mean of the half-list obtained by dropping out the highest quarter

and lowest quarter), the geometric mean, tile median, or the root-mean-square (RMS).

In calculating the above metrics, only those pixels in the difference image which correspond

to a nonblack (nonbackground) pixel in either image A or image B are counted. Pixels

which are black in both images A and B do not count towards the total number of pixels

when calculating these metrics. We call the pixe]s that do count, the nonbackgro_md pixels

in the difference image. Therefore, each pixel in the difference image needs to be tagged as

nonbackground or not nonbackground. A separate shadow array can be used for the tags.

The standard deviation and the variance can be used to measure the dispersion of the dis-

tribution of differences around the above central measures. The dispersion can be visualized

by displaying a histogram of tile pixel values in the difference image, or by displaying the

difference image itself.

F'or multichannel images, a separate analysis of each channel seems preferable since this

permits the detection of a difference or an error occurring in only one channel. It is possible,

however, to use a vector norm on _n, a measure of distance in a vector space, to compare

a pixel Pl E _'_ of image A with a pixel P2 E _'_ of image B. Usually the Euclidean norm

12(p_; P2) or th e co-norm loo(pl, p2) are us,ed f0_r this purpose [17]. Certain color spaces may

support the comparison of multichannel images better than others. Glassner [17] argues that

taking a difference in a perceptually uniform color space such as L-a-b space or L*v.*v* space

may be most appropriate. More research in this area is needed.

Of the metrics described above, the RMS measure is most commonly used for image com-

parison purposes. However, there is rather widespread agreement that RMS error is not a

good measure of overall image differences or of perceptual distortion. For example, Teo [58]

in an image comparison study, shows that it is possible for images with less visible distortion

to have a greater RMS error. Indeed none of the above metrics are completely satisfactory

for overall image comparison.

Figure I a shows a volume rendered image of coolant velocity magnitude from a finite element

simulation of coolant flow inside a component of the French Super Phoenix nuclear reactor.

This image wilt serve as a benchmark image; it was created by the high accuracy volume

rendering system described by Williams, Max and Stein [73]. Several different types of errors

were added to the benchmark image; these erroneous images are shown in Figures 2, 3, and 4.

The RMS difference between each of these erroneous images and the benchmark image is

the same (0.044); yet the visual effect of the error is significantly different in each of these

images. For most visualization purposes, the image shown in Figure 3 is just as useful as the

benchmark image in Figure 1; whereas the image in Figure 4 is clearly misleading. Figure 5

aThe figures can be found at http://www.nas.nmqa.gov/NAS/TechReports/NASreports/NAS-96-
021/NAS-96-021.html
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showsthe cumulativeeffectof adding all three types of error at onceto the benchmark
image.This imagewill beusedasanexamplein explainingour metricsand the processfor
computingthem.

Existing approachesto imagequality metrics arediscussedat the end of Section2. Our
approachis to decomposethe overallor aggregate difference between two images into cate-

gories, each of which has a distinct perceptual impact, and then measure and analyze each

of these categories. The categories are carefldty chosen so that each category of difference is

responded to quite differently by the human visual system. When applied to these individnal

categories of difference, the metrics described above give a more useful representation of how

the images differ.

We partition the difference between two images into three categories: bias, noise and struc-

tured difference. These categories are defined in the following sections. We refer to the

overall difference image of two images A and B, cliff(A, B), as the aggregate difference im-

age. The aggregate difference image, cliff(Figure 1, Figure 5), is shown in Figure 6. (Method

(c), described above, is used to display all difference images in this paper.) Our goal then

is to use numerical statistical methods as well as image processing techniques: (a) to sepa-

rate the aggregate difference into noise, bias and structured difference, (b) to quantify with

mathematically computable metrics the amount of difference in each of these categories, and

(c) to analyze each category of difference to determine its composition, and if possible, to
find its sources.

The importance of a particular component or subcomponent of difference will depend on the

intended use of the image. Some differences, such as a small component of low level random

noise or a small difference in the overall brightness of an image, may not have a significant

effect on the user. Whereas a difference in the form of a small bright blob or a halo could

be very misleading depending on the specific visualization task being performed. Separating

the difference into different general categories allows us to discriminate between differences

that are perceptually less significant and those that can seriously affect the interpretation of

the data. Given a specific task, the metrics can then be used to predict the relative value of

two images for accomplishing that. task.

The following sections define and discuss each of these classes of difference, investigate the

implications of each on visualization, and describe methods to isolate, measure and analyze

each category of difference.

A. Noise

Noise in a signal is an uncorrelated modification to the original signal. For the purpose of

analyzing the differences between two images, we assume that random or spurious differences

in pixel values that are not part of any larger pattern are noise. Sources of noise in a volume

rendered image can include numerical or roundoff error, stochastic sampling, and numerical

overflow during the computation of the image. Numerical overflow can occur if a limited

number of bits, e.g. 8 bits, is used to accumulate pixel intensities; a slight increase or decrease
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in intensity can cause an extreme change in the pixel value, e.g. from 255 to 0. Generally,

numerical error will cause low level random noise with a fairly high spatial frequency and

a normal distribution of differences whose mean will be close to zero. Stochastic sampling

and overflow can give rise to spike noise or pops; this form of noise will generally have a low

amplitude uniform distribution of differences.

Because of its lack of spatial correlation, noise in an image generally has a higher spatial

frequency spectrum than the more structured components of the aggregate difference image.

Therefore low-pass spatial filtering can be effective for removing noise. There are several

techniques for image smoothing including neighborhood averaging and low-pass filtering

[21, 48]. Typical smoothing filters perform some form of moving window operation that

may be a convolution or other local computation in the window. Linear smoothing can be

performed either by convolution or by Fourier filtering. There is no difference in the results;

however, Fourier domain processing often gives more insight into the nature of the noise and

so is useful in designing a noise filter. Fourier filtering methods are described in [42, 48].

It is easy to smooth an image and thereby filter out noise; the problem is how to do so without

blurring interesting features. Typically edges have a high spatial frequency so smoothing

filters tends to attenuate or blur the sharpness of edges in an image. This blurring of edges

will also result in incorrectly classifying a portion of the aggregate difference image as noise.

For this reason, we emphasize edge-preserving filters.

Typical windowing filters set the value of the center pixel in a neighborhood or window to

a function of the other pixels in the window. This function may be the mean, the weighted

mean, the median, the mode, or the mean of the k pixels in the window whose values are

closest, to the center pixel. Lee and Redner [31] describe a class of nonlinear filters called

alpha filters. In these filters, the samples in the neighborhood are sorted in increasing order,

a percentage a of the samples are removed from both ends of the sorted list, and then the

remaining samples are averaged. To improve the filtering, the alpha filter can be repeatedly

applied with different values of alpha.

Windowing filters can have different shapes. Some of the more useful window shapes are

square, plus-sign and octagonal. Typically the sizes of the windows range from 4 to 24 of

the nearer neighbors. Small sized windows are preferable since features or artifacts smaller

than about 3 x 3 to 5 × 5 pixels can often be safely ignored.

Other window filtering methods are based on gradients, homogeneity, iteration, cascaded

filtering or conditional filtering [48]. A quantitative comparison of some of these methods is

given by Chin and }%h in [6]. In addition, optimal filtering can be used for noise suppression

[26]. Shapiro and Silverman [54] present a method to characterize the amount of noise in

a Signal prior to its removal A noise M{er may work reasonably well on one type of image

but not on another so care must be taken in selecting a filter. The nature of the noise

and the attributes of _'eaGiires of lnterest, such as horizontal or vertical alignment, should be

incorporated into the design of the filter -- one way to approach to this is to use Fourier
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analysisasreferredto above.

The median,the k nearest neighbors and the alpha filter with a plus-sign shaped window

seem to be the best edge-preserving filters. The blurring effect of neighborhood averaging

can also be reduced by using a threshold procedure [21]. The idea here is to leave unchanged

those values whose difference from their neighborhood values do not exceed the specified

value of the threshold. This technique can produce an equivalent reduction in noise to

non-threshold smoothing, but. can leave the edges much sharper.

We calculate a noise-filtered difference image by applying one of the above edge-preserving fil-

ters to the aggregate difference image. Let the aggregate difference image be D and the noise-

filtered difference image be NF, then we define the noise image X to be diff(D, NF). A metric

for the noise in the aggregate difference image D is given by .M,_ois_. = _,u_pi,_L,,,t,,_., IX] •

This metric is an approximation since the noise-filtered difference image may contain a com-

ponent of structured difference: (a) a fine grained texture or pattern whose detail is smaller

than the pixel smoothing window or (b) the effects of edge blurs resulting from the filtering

process. Isolating these components from the noise-filtered difference image before calculat-

ing the noise metric will result in a more accurate measure of noise. Methods for isolating

and removing fine grained texture in an image are given in [1,48]. One method to identify

edge blurs is described next.

The effects of edge blurs in the noise image can be detected by an analysis of the distribution

of the nonbackground pixel values in the noise image. A histogram is very useful for doing

this. Pure noise will usually have either a uniform or a normal distribution of differences.

The degree of deviation from either of these distributions is a measure of edge blur in the

noise image. For a more accurate analysis, the noise image can be successively subdivided

into smaller tiles and the distribution of difference analyzed for each tile. This procedure is

also valuable for determining if the noise is uniformly distributed spatially over the image

or is constrained to certain regions.

The human visual system is remarkably tolerant of noise [7, 72]. Therefore unless the signal

to noise ratio is low, noise has little effect on the use of the image. When an image A is being

compared with a benchmark image B, a signal to noise ratio can be calculated for image A

as (_]_tt_pi_,t__l_ B)/.A4,_oi_, where Ad,ois_. is the noise metric for the aggregate difference

image diff(A, B).

Figure 7 shows the noise-filtered difference image after filtering the aggregate difference image

shown in Figure 6. To create the noise filtered difference image, the aggregate difference

image was filtered with one pass of a median filter, followed by a single pass of an alpha

filter with a = 0.5. A 3x3 plus-sign shaped window, which included five pixels, was used for

both filters. The noise metric for the image shown in Figure 6 is Mnoi,, = 3023.42, and the

signal to noise ratio is 2770_.10 _ 9.16.,3023.42

The noise should be removed from the aggregate difference image before proceeding t.o isolate

the bias and structured difference as described in the following two sections.
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B. Bias

If oneof two imagesbeingcomparedis uniformly brighter than the other,but hasno other
difference,the aggregatedifferencemetricswill showasignificantdifferenceeventhoughthe
information content of both images could be perceptually equivalent. In statistics, bias is

defined as the expected value of the difference between a value and an estimate of that value.

We use the term bias to refer to a (relatively) uniform difference in intensity between images

across the pixels of the image. The effect of bias may not be serious if the pixel intensities

lie in the linear portion of the response curve of the monitor and the human visual system.

The difference of the medians of the nonbackground pixel values of each of the images being

compared is an excellent metric for bias, J_b_, = Median(A) - Median(B), where A and B

are the two images being compared, B is the benchmark image if applicable, and background

pixels, as determined from the difference image diff(A, B), are ignored. In order to have a

measure of the bias that can be compared with the noise and structured difference metrics,

which are cumulative measures rather than per pixel measures, we define a cumulative bias

metric Mbi__o,_r_tt = n * Mbi_s where n is tile number of nonbackground pixels. The bias

metric computed by subtracting the median of the nonbackground pixels in the benchmark

image from the median of Figure 5 after the removal of noise is 3.4bi_s = +0.063. This

indicates that each pixel in the error image is 6.3% brighter than in the benchmark image.

The cumulative bias metric is .Mb/_,_o_r_zt = 8446.03.

The mode of a distribution f(x) is the value of x where f(x) is maximum. The mode of

a distribution of pixel values can be determined by an analysis of a histogram of the pixel

values using a limited number of buckets. Provided the mode of the dis(ribution of pixel

values in a noise-filtered difference image is sufficiently distinct, it can also be a metric for

bias, Mb,_.,_ = Mode(noise-filtered-difference-image).

The bias should be subtracted from the noise-filtered difference image before analyzing the
structured difference as described in the next section.

C. Structured Difference

Structured difference is that part of the aggregate difference image which consists of objects

which have a coherent structural form, such ms edges, halos, lines, bright or dark spots, blobs,

textures or pat.ternsl We refer to these objects collectively as structured objects. The presence

of structured difference means the images being compared have a meaningful difference in

content in the context of scientific visualization. These differences may be features that are

introduced or enhanced or are lost. or attenuated; they may or may not represent, features

inherent in the data set. In any case, the class of difference which is most important to focus

on when comparing and/or evaluating volume rendered images is structured difference. In

visualization, the scientist is looking for patterns or structure in the data, therefore structured

difference is highly significant as it could mislead the scientist.

After noise and bias have been removed from the aggregate difference image, the resulting
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image,the structureddifference image, can be measured. Figure 8 shows the structured dif-

ference image after removing the bias from tile noise-filtered difference image, Figure 7. One

metric for structured difference is M,tr__di# = _ _u_m__,_r_,_ (1structured_difference_image [).

The structured difference metric for Figure 8 is M,tr__di2' = 693.63. Alternatively, any of

the metrics described at the beginning of Section 4 such as RMS or mean could be applied

to the structured difference image. The key factors we want to measure are the number of

pixels involved, the magnitude of the difference and the spatial context. Which is the best

metric will depend on the visualization application.

The structured difference image should then be analyzed for content using tile feature ex-

traction techniques outlined below. Statistics can be gathered on the number and size of

the various coherent objects: e.g. lines, blobs, edges, halos, in this image. The features can

optionally be classified as to alignment: a_s grid or cell aligned, view aligned, background

aligned, or unaligned.

An analysis of the structured difference image may yield important clues as to the source

of the differences. This may lead to the identification of errors in the design or implemen-

tation of the volume rendering system -- for example, grid-aligned differences may" indicate

improper treatment of degeneracy or the differences may be as innocent as a slight change

in viewing parameters or that pixe] values were computed at pixel corners rather than at

pixel centers. Once a structured object has been isolated in the structured difference image,

the images being compared should be analyzed to find the source of this object..

Feature extraction techniques include thresholding, Fourier transform analysis, image en-

hancement techniques, edge detection, gradient finding, shape analysis reconstruction and

region growing algorithms. For example, blobs, spots, edges or halos in an image can be

isolated by the following method. A threshold filter [1, 26] is performed on the absolute

value of a difference image for several different threshold values. In each resulting image all

pixels whose difference is greater than or equal to the threshold are set to 1, the remainder

are set to 0. Next, a region growing algorithm, such as blob coloring or segmentation [21]

is used to find contiguous blobs or shapes whose difference is binary 1. The patterns so

found can be displayed visually and/or the number of pixels comprising each blob can be
calculated for each threshold. Further details on feature extraction techniques can be found

in [1, 17, 21, 26, 48].

It can be very helpfid to graphically display the structured difference image alongside the

images being compared and visually explore them using simple graphics and image processing

tools, such as a magnifier, filter or histogram. Often, prominent, structured objects can be

located in the difference image and then traced to their source in one of the original images.

However to locate more subtle features, it is usually necessary to apply the feature extraction

techniques described above.
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5 SUMMARY

The goal of this paper is to lay a foundation for objectively comparing volume rendered

images, leading to objective evaluation of their accuracy and quality. In order for an image

comparison to be useful the images should be created with equivalent parameters or a)least

with any differences known. In order to generate a benchmark image for comparison pur-

poses, the parameter specifications must be provided. So an essential prerequisite for image

comparison is a complete list of all possible parameters that must be specified. We provide

such a listing and also state preferred formats and/or values for many of the parameters

which will result in maximizing the effectiveness of the comparison process, especially for

benchmark comparisons.

When comparing two images it is not enough just to look at. a measure of the overall or

aggregate difference between the images. Rather it is necessary to measure specific differences

that. affect the interpretation of the images. To dramatize this, we showed a benchmark image

and a set of three erroneous images each of which had a different category of error added

to it. The RMS difference between the benchmark image and each error image is identical.

As can be seen in these figures, the error has a very different perceptual impact in each

of the three cases. Therefore, ill this paper we focus on analyzing and decomposing the

difference before measuring it.. To do this, we develop: (a) a methodology for classifying the

difference between two images as noise, bias or structured difference, (b) a suite of metrics

to objectively quantify each class of difference, and (c) techniques to analyze the nature of
each class of difference and relate it to its source.

The difference metrics can be used to measure the effect on images when approximations are

introduced into the volume rendering process, and they can lead to the detection of errors in

the design or implementation of a volume rendering system. The metrics can also be used to

determine the effect on an image when a rendering parameter is changed, to compare images

generated by two different volume rendering systems, and to detect and quantify changes

between images of similar data sets or images of different time steps in time-varying data
sets ................

Althrmgh the methodology described herein was developed primarily for evaluating images

of nonrectilinear data sets, most of this work is also relevant to uniform grids. This research

was not designed to exclude voxel data, but rather to be as generally applicable as possible.

This work may- also be applicable to benchmarking studies of images created by general

purpose radiosity or ray' tracing systems.

The difference classification methods and the metrics described herein are currently being

used to evaluate images produced by several existing volume rendering systems for a suite of

nonrectilinear data sets. A companion paper will report on this work and also will include

several volume rendering benchmarks. Each of these benchmark scenes will consist of an

image generated by a high accuracy volume rendering system and its complete generation
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specification,asdefinedin Section3B.

Work in this areais just beginning,so additionalwork is needed on a wide variety of top-

ics. The development of additional categories of differences and better metrics will improve

the usefldness of this work. Methods for analysis of structured difference are likely to be

application dependent, but also quite usefld. Noise filters for Gaussian noise (and other

distributions) can be developed. And finally, testing the accuracy of our hypothesis that

structured differences are what really matters (by measuring tile performance of people per-

forming specific tasks) will be useful and enlightening.
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APPENDIX A

The question is often asked, "If volume rendering curvilinear and unstructured grids is so

slow, why not resample the data to a regular grid?" There are both theoretical and pragmatic

difficulties with this suggestion.

Assume the original data is completely specified by the locations of the original points, the

va]ues at these original data points and some interpolation fimction between these points.

The degree of the interpolation function and the geometry of the original mesh determine
a lower limit on the size of the smallest feature that can be present. This limit and the

Nyquist sampling theorem determine the required sampling density to capture all features;

at least, two samples per interval of this feature size are needed in each dimension. For

simplicity, assume linear interpolation across tetrahedral grids, and trilinear interpolation

across hexahedral cells of curvilinear grids. These assumptions force all extrema of the field

to be at sampled locations, so no feature is smaller than the smallest distance between

original grid points. Sampling at twice the density in each dimension of the smallest cell

in a curvilinear grid of hexahedral cells results in an eightfold increase in the number of

samples required, assuming all the cells are roughly the same size. If a volume renderer for

regular grids runs between ten and one hundred times faster than one for unstructured or
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curvilineargrids, this trade-offmay"seemadvantageous.Howeverthereareproblemswith
this approach.

A strictly pragmaticproblemis that fast volumerenderersusuallyrequireall the data to fit
in memory. But nonrectilineardatasetsoften arevery large. Resamplingsucha data set
makesit at leasteight timeslargerand probably far too large to fit in memory.Then the
fast regulargrid rendererslowsto a rate limited by diskpaging.

A much more severe,but still pragmatic, difficulty ariseswhen confrontedby real data
sets. The reasonfluid dynamicscomputations are performed on curvilinear grids is, in

part, because the size of the features of interest varies drastically across the volume of

the computation. The grid cell sizes vary correspondingly to capture these features. The

aeroscientists spend a great deal of time and effort designing these grids to capture features

of interest as precisely as possible with a fixed budget of nodes. This limit is determined by

the memory available on the machine performing the computational fluid dynamics (CFD)

calculation. Typical grid sizes for problems run recently at NASA's Numerical Aerodynamics

Simulation Center are between several hundred thousand and a few tens of millions of nodes.

The ratio of the longest grid cell edge to the shortest edge in typical aeronautical fluid dy-

namics calculations ranges between one thousand and one million. If the entire volume is

sampled at a uniform density, determined by the sampling requirements of the smallest grid

cell, the data set size is multiplied by several thousand or million, not just eight. This regular

grid may not fit even on a workstation disk, let alone in main memory. The appropriate

response to this difficulty would seem to be a multiresolution representation. A straightfor-

ward multiresolution representation using axis aligned samples at integral multiple step sizes

might get back to the eight-fold increase. But rendering this multiresolution structure will

not be as fast as rendering a regular grid.

The theoretical difficulties arise in dealing with the external boundaries of the volume to be

resampled, or with cell boundaries where there may be discontinuities in the data values.

Computational scientists choose curvilinear and unstructured grids not only so they can

capture features of varying size at different locations in the field, but also because these grids

can capture the unique shape of the volumes over which the computations are performed.

Aircraft fuselages and engine combustion chambers, to give two examples, are extremely

complex shapes. The boundaries of the computational grids are designed to provide a good

polygonal approximation to these shapes, often using a great many very small cells on

these boundaries. Resampling using only axis aligned cells, even with multiple resolutions,

inevitably either misses some of the volume of interest or places regular grid nodes outside

the original input volume. Missing some of the volume is unacceptable, particularly since

the regions near these boundaries are usually the most interesting part of the flow.

Cells with some points inside the aircraft body suffer another; even more unpleasant diffi-

culty; the field being approximated is discontinuous at the aircraft boundary, that is, there

is no flow inside the wing, filselage or turbine blade. This discontinuity translates into a
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Nyquistrequirementfor an infinitely (lensesamplein the neighborhood of this boundary. In

structural modeling, similar discontinuities may exist, between interior cells, for example at
an interface between two different materials.

There is one more argument used to support the possibility of regular resa.mpling of this

data. This argument is that a digital image is a regularly sampled grid of the influence of

tile data set, so it must be possible to limit sampling by what is visible. This statement

is true, as far as it goes. However to reap the benefits of a regular grid, (he conversion

via resampling must be clone only once, or at least very infrequently; it is tile resampling

involved in creating the image that takes so long and drives us to consider converting to a

regular grid. Changes in the viewing direction or distance force resampling, invalidating the

benefits one might have expected.

APPENDIX B

Volume rendering systems are based on a theoretieM optical model for light interacting with

a volume density or cloud. This appendix gives an example of how an incomplete description

of the underlying optical model can result in an ambiguity in the genera(ion specification for

a volume rendered image. The model used for illustration is (he absorption plus emission

model [41, 75]; every point in the volume density both absorbs light and also emits light

(glows). We will assume monochromatic light; however, the example generalizes to colored

light. The different.tel equation for the light intensity along a ray lowards the eye through

the volume density is:

= ,q(s)ds- r(s)r(s),ts

where s is a length parameter along the ray and Its) is the light intensity at s. The extinct.ion

coefficient r(s) is a function of position in the volume density and is usually assigned by a

transfer hmction based on the scalar field f(s) being visualized. In the limit as ds tends to

zero, r(s)ds is the fraction of light coming from behind s that is occluded or absorbed a(

s. \Vhen a point s in (he cloud is to(ally transparent, r(s) = 0; when it. is lot, ally opaque,

7-is) = co. The term .q(s) is the source or glow lerm; it has tile meaning that in the limit, as

ds tends to zero, g(s)ds is the intensity of light emitted at s.

AI this point i( might seem that the model is completely specified. However, there are at

least two ways to treat, the glow term g(s). Wilhelms and Van Gelder [71] treat g(s) as

a physical property of each point, in the cloud. Wherea.% Williams and Max [75] consider

g(s) = t_(s)_'(s), where the chromaticity t@s) is a physical properly of each point in the

cloud. They rationalize thai if a point in the cloud has zero extinction coefficient, then it.

should also have zero glow energy. In the former case, the color transfer hmction specifies

.q(s), whereas in the latter case i( specifies s:(s). (Porter and Duff [46] allude to this difference

in their discussion of premultiplying color by opacity in the context of subpixel accumulation

and in their description of an opaque operator for dealing with luminescent objects which
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addscolorinformationwithout obscuringtile background.)

In the contextof this appendix,t.heimportant point,is thal, with the sameinput data, a
volumerendererbasedon thefirst assumptionaboutg(s) can generate quite different images

than one based on the second assumption. Van Gelder calls the model that treats g(s) as

a physical property of the cloud tile Los Angeles neon and smog model. In this model,

when the extinction coefficient: is zero, the cloud is comp]el.ely transparent yet glows with an

energy g(s)d.s -- like a neon 4 filled bulb, or to further the analogy, like looking at something

throngh colored glasses. When the extinction coefficient at a poinl lends toward infinity, the

light intensity goes to zero and the image becomes black at thai point -- hence the smog. On

t.he other hand, in the Williams and Max model where .q(s) = _(s)r(.s), when the extinction

coefficient goes to zero, the glow energy also goes to zero; when the extinction coefficient, at

a point s tends to infinity, the light, intensity at s is s(s).

Tile advantages of the first model are: (a) It allows the modeling of a transparent glowing

cloud, (to do this with the second model would require an infinitely bright g(s)). (b) The

glow energy can be specified in t.erms of a different, scalar fie](t lhan the one used for the
extinction coefficient.

The advant.ages of ihe second model are: (a) It can be more intuitive for some volume ren-

tiering applications. For example: (i) increasing lhe extinction coefficien! transfer flmction

makes the surface color more dominant, rather than making the image darker and ultimalely

black, and (it) if the extinction coefficient at a point in the volume is very small, the glow

energy will also be very small. (b) The extinction coefficient, does not appear in the denom-

inator of the cumulative light intensity equation as it does in the first model, see Equation

(8) in [71], so the cumulative light intensity is well behaved for very small or zero extinction
coefficient..

The top image in Figure 9 is a volume rendering of the Super Phoenix data set using the

Williams and Max treatment of tile glow energy. The bottom image is a volume rendering of

the same data set and transfer functions except thai, the
\Vliiielms and van Geiiier glow energy is UtiliZed. 'B01i_ _{mages were crealed

using the absorption plus emission model. The bottom image is brighter since the color is

not premulliplied by the extinction coefficient which in this case is always less than one.

Tile white in the bottom image is caused by the saturation of all three channels due to tile

brighter colors. Both images were generated by the volume rendering system described in

[r3].

One other difference is, worth mentionin:: g-- the interpolation properlies of the two models.
If the scalar field and the transfer functions are linear on a ray segment, lhen the first lerm

on the right hand side of Equation 1 will be linear for tile neon and smog model, whereas in
the case of tim Williams and Max model that term will be quadratic.

4a transparent light-emitting material
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Whenimagesfrom volumerenderingsystemsbasedon eachof theseversionsof the same
theoreticMoptical modalwerefirs[;comparedside-by-side,therewassomeinitial confusion.
Theimageswerequitedifferent,yet it wasthoughtthat theunder]ylngmodelswereequiva-
lent. Thelessonwasclear. It is importantto clearlyunderstandall aspectsandimplications
of the optical modelon whichavolumerendereris ba.sed.
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